Pages

Formalisme

Kamis, 15 Desember 2016

Dalam istilah populer, formalisme adalah pandangan bahwa matematika adalah permainan yang dimainkan dengan formal berarti tanda di atas kertas, mengikuti aturan. Jejak filsafat formalis matematika dapat ditemukan dalam tulisan-tulisan Uskup Berkeley, tapi para pendukung utama formalisme adalah David Hilbert (1925), awal J. von Neumann (1931) dan h. kari (1951). Program formalis Hilbert bertujuan untuk menerjemahkan ke dalam sistem formal matematika yang tidak ditafsirkan. Dengan cara pembatasan tetapi meta-matematika berarti sistem formal yang akan ditampilkan menjadi cukup untuk matematika, oleh rekan-rekan formal yang berasal dari semua kebenaran matematika, dan aman untuk matematika, melalui bukti konsistensi.
Tesis formalis terdiri dari dua klaim.
  1. Matematika murni dapat ditafsirkan sebagai sistem formal, dimana kemudian kebenaran matematika diwakili oleh dalil formal.
  2. keamanan sistem formal dapat ditunjukkan dalam hal kebebasan dari inkonsistensi melalui meta-matematika.
Teorema ketidak lengkapan Kurt Godel (Godel, 1931) menunjukkan bahwa program tidak dapat terpenuhi. Teorema yang pertama menunjukkan bahwa bahkan tidak semua kebenaran aritmatika dapat diturunkan dari Aksioma Peano (atau yang lebih besar aksioma rekursif).
Hasil ini bukti-teori telah dilakukan sejak dicontohkan dalam matematika oleh Paris dan Harrington, yang versi Teorema Ramsey benar, tetapi tidak dapat dibuktikan di Peano aritmatika (Barwise, 1977). Teorema ketidaklengkapan kedua menunjukkan bahwa dalam kasus-kasus yang diinginkan memerlukan bukti konsistensi meta-matematika lebih kuat daripada sistem yang akan dilindungi, yang dengan demikian tidak ada perlindungan sama sekali. Misalnya, untuk membuktikan konsistensi Peano Aritmatika mengharuskan semua aksioma dari sistem dan asumsi lebih lanjut, seperti prinsip induksi transfuuite atas ordinals dpt dihitung (Gentzen, 1936).
Program formalis, sudah itu berhasil, akan memberikan dukungan untuk pandangan absolutis kebenaran matematika. Sebagai bukti formal, yang berbasis di sistem matematika formal yang konsisten, akan memberikan batu ujian untuk kebenaran matematika. Namun, dapat dilihat bahwa baik klaim formalisme telah membantah. Tidak semua kebenaran matematika dapat direpresentasikan sebagai teorema dalam sistem formal, dan lebih jauh lagi, sistem itu sendiri tidak dapat dijamin aman.


Tidak ada komentar:

Posting Komentar

 
FREE BLOGGER TEMPLATE BY DESIGNER BLOGS