Pages

Tinjauan tentang Konstruksi Sosial

Selasa, 06 Desember 2016

Sebagaimana quasi-empirisme, fokus utama konstruksi sosial adalah asal-usul pengetahuan matematika, dibandingkan pembenarannya. Pengetahuan matematika baru yang dihasilkan dapat berupa pengetahuan subjektif ataupun objektif, dan memberi ciri khusus pada konstruktivisme sosial dengan menganggap keduanya merupakan bentuk pengetahuan, dan menghubungkan keduanya dalam siklus kreatif. Ini bukanlah hal yang luar biasa dalam memandang pengetahuan subyektif dan pengetahuan subyektif yang diperlakukan secara bersama dalam filsafat, sebagaimana dalam Popper (1979). Apa yang kurang umum adalah memperlakukan hubungan mereka, karena ini terkait dengan asal-usul pengetahuan dalam filsafat.
Konstruktivisme sosial menghubungkan pengetahuan subjektif dan objektif dalam sebuah siklus di mana masing-masing memberikan kontribusi dalam pembaruan satu sama lain. Pada siklus ini, jalur yang diikuti pencapaian pengetahuan matematika baru dari pengetahuan subyektif (pembentukan pribadi seorang individu), melalui publikasi menjadi pengetahuan (dengan pengawasan bahasan inter-subjektif, reformulasi dan penerimaan). Pengetahuan objektif diinternalisasi dan direkonstruksi oleh individu, selama belajar matematika, untuk menjadi pengetahuan subjektif individual. Menggunakan pengetahuan ini, individu membuat dan mempublikasikan pengetahuan matematika baru, sehingga melengkapi siklus. Jadi pengetahuan subjektif dan objektif matematika masing-masing memberikan kontribusi kepada penciptaan dan penciptaan-ulang yang lain. Asumsi yang mendukung catatan konstruktivis sosial untuk penciptaan pengetahuan sebagai berikut :
1.               Seorang individu memiliki pengetahuan subyektif tentang matematika
Perbedaan utama adalah antara pengetahuan subjektif dan objektif. Berfikir secara matematis dari seseorang (baik proses dan produk, pengetahuan matematika) adalah pikiran subjektif. Hal ini sebagian besar mempelajari pengetahuan (yaitu rekonstruksi objektif) tetapi, tetap mengikuti batasan-batasan tertentu yang kuat, proses hasil penciptaan-kembali dalam representasi subjektif yang unik dari pengetahuan matematika. Selanjutnya, individu menggunakan pengetahuan ini untuk membangun pengetahuannya sendiri, produk matematika yang unik, kreasi dari pengetahuan matematika subjektif yang baru.
2.               Publikasi adalah perlu (tetapi tidak cukup) agar pengetahuan subjektif menjadi pengetahuan objektif matematika
Ketika hasil pengetahuan matematika subjektif dari individu masuk ke masyarakat umum melalui publikasi, maka memenuhi syarat untuk menjadi pengetahuan objektif. Ini tergantung pada keberterimaannya, tetapi pertama-tama harus dinyatakan secara fisik (dalam cetak, media elektronik, secara tertulis, atau sebagai kata yang diucapkan). (Di sini pengetahuan dipahami tidak hanya meliputi pernyataan, tetapi juga pembenaran mereka, biasanya dalam bentuk bukti informal).
3.               Melalui penerbitan heuristik Lakatos, pengetahuan menjadi pengetahuan obyektif matematika
Matematika terpublikasi adalah subyek untuk dicermat dan dikritik oleh orang lain, mengikuti heuristic Lakatos (1976), yang mana dalam hasil reformulasi dan penerimaan sebagai pengetahuan obyektif matematika (misalnya, diterima secara sosial). Penerapan yang sukses di heuristik ini cukup untuk penerimaan sebagai pengetahuan matematika objektif, meskipun pengetahuan itu selalu menyisakan tantangan terbuka.
4.               Heuristik ini tergantung pada kriteria objektif
Selama mempelajari asal-usul pengetahuan matematika, kriteria objektif memainkan bagian penting (logika otonomi Lokatos untuk penemuan matematika, dipahami secara filosofis, bukan secara historis). Kriteria ini digunakan dalam tinjauan kritis terhadap pengetahuan matematika, dan termasuk berbagi inferensi gagasan yang valid dan asumsi metodologis dasar lainnya.
5.               Kriteria obyektif untuk mengritik pengetahuan matematika yang terpublikasi didasarkan pada pengetahuan objektif bahasa, seperti matematika.
Kriterianya tergatung pada besar dan luas pengetahuan matematika yang dimiliki, tetapi pada akhirnya berhenti pada pengetahuan bahasa bersama, yaitu, pada konvensi linguistik (pandangan conventionalist untuk dasar pengetahuan). Ini juga secara sosial diterima, dan karenanya objektif. Dengan demikian baik pengetahuan matematika terpublikasi maupun yang konvensi linguistic, dimana pembenaran berada, adalah pengetahuan objektif.
6.               Pengetahuan subyektif matematika yang diinternalisasikan secara luas, akan merekonstruksi pengetahuan objektif.
Tahap utama dalam siklus penciptaan matematika adalah internalisasi, yaitu representasi subjektif dari dalam, dari matematika obyektif dan pengetahuan linguistik. Melalui pembelajaran bahasa dan representasi inti matematika dari pengetahuan ini, termasuk aturan yang terkait, batasan dan kriteria dibangun. Hal ini membolehkan baik penciptaan matematika subyektif, maupun partisipasi dalam proses mengkritisi dan mereformulasi (yaitu publik) pengetahuan matematis.
7.               Kontribusi individu dapat menambahkan, melakukan restrukturisasi atau reproduksi pengetahuan matematika
Berdasarkan pengetahuan subyektif matematika, maka secara individu berpotensi melakukan kontribusi ke dalam wadah pengetahuan objektif. Ini dapat menambah, restrukturisasi, atau hanya mereproduksi pengetahuan matematika yang sudah ada. Tambahan bisa berupa dugaan atau bukti baru, yang mungkin termasuk konsep atau definisi baru. Mereka dapat juga berupa terapan baru dari matematika yang sudah ada. Kontribusi restrukturisasi bisa berupa konsep baru atau teorema yang digeneralisasi atau hubungan dua atau lebih bagian pengetahuan matematika yang sudah ada sebelumnya. Kontribusi yang mereproduksi matematika yang sudah ada biasanya berbentuk buku teks atau perluasan lanjutan.


Tidak ada komentar:

Posting Komentar

 
FREE BLOGGER TEMPLATE BY DESIGNER BLOGS